A central role for Pyk2-Src interaction in coupling diverse stimuli to increased epithelial NBC activity.
نویسندگان
چکیده
Regulation of renal Na-HCO cotransporter (NBC1) activity by cholinergic agonists, ANG II, and acute acidosis (CO(2)) requires both Src family kinase (SFK) and classic MAPK pathway activation. The nonreceptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) couples discrete G protein-coupled receptor and growth factor receptor signaling to SFK activation. We examined the role of Pyk2-SFK interaction in coupling these stimuli to increased NBC1 activity in opossum kidney cells. Carbachol increased tyrosine autophosphorylation of endogenous Pyk2 and ectopically expressed wild-type Pyk2 and were abrogated by kinase-dead mutant (Pyk2-KD) overexpression. Pyk2 phosphorylation was calcium/calmodulin dependent, and Pyk2 associated with Src by means of SH2 domain interaction. Pyk2 phosphorylation and Pyk2-Src interaction by carbachol were mimicked by both ANG II and CO(2). To correlate Pyk2 autophosphorylation and Pyk2-Src interaction with NBC activity, cotransporter activity was measured in untransfected cells and in cells overexpressing Pyk2-KD in the presence or absence of carbachol, ANG II, or CO(2). In Pyk2-KD-overexpressing cells, the effect of carbachol, ANG II, and CO(2) was abolished. We conclude that Pyk2 plays a central role in coupling carbachol, ANG II, and CO(2) to increased NBC activity. This coupling is mediated by Pyk2 autophosphorylation and Pyk2-Src interaction.
منابع مشابه
Novel Role of Src in Priming Pyk2 Phosphorylation
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon...
متن کاملRegulation of the renal Na-HCO3 cotransporter. XI. Signal transduction underlying CO2stimulation.
We have previously shown that CO2 stimulation of the renal Na-HCO3 cotransporter (NBC) activity is abrogated by general inhibitors of protein tyrosine kinases. The more selective inhibitor herbimycin also blocked this effect at concentrations known to preferentially inhibit Src family kinases (SFKs). We therefore examined a role for SFKs in CO2-stimulated NBC activity. To this end, we engineere...
متن کاملPyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3.
The present study examines the role of Pyk2 in acid regulation of sodium/hydrogen exchanger 3 (NHE3) activity in OKP cells, a kidney proximal tubule epithelial cell line. Incubation of OKP cells in acid media caused a transient increase in Pyk2 phosphorylation that peaked at 30 seconds and increased Pyk2/c-Src binding at 90 seconds. Pyk2 isolated by immunoprecipitation and studied in a cell-fre...
متن کاملDynamin reduces Pyk2 Y402 phosphorylation and SRC binding in osteoclasts.
Signaling via the Pyk2-Src-Cbl complex downstream of integrins contributes to the assembly, organization, and dynamics of podosomes, which are the transient adhesion complexes of highly motile cells such as osteoclasts and dendritic cells. We previously demonstrated that the GTPase dynamin is associated with podosomes, regulates actin flux in podosomes, and promotes bone resorption by osteoclas...
متن کاملSuppression of Pyk2 Kinase and Cellular Activities by Fip200
Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic tyrosine kinase implicated to play a role in several intracellular signaling pathways. We report the identification of a novel Pyk2-interacting protein designated FIP200 (FAK family kinase-interacting protein of 200 kD) by using a yeast two-hybrid screen. In vitro binding assays and coimmunoprecipitation confirmed association of FIP200 with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 283 4 شماره
صفحات -
تاریخ انتشار 2002